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Abstract:
Seeking a solution to maintain plastic recycling costs while increasing the output of

reusable material, this paper poses the question “what type of machine learning algorithm is most
suitable for a plastic identification system in consumers’ homes?” It investigates five total
machine learning algorithms to determine which one best balances accuracy, management of
resources, and time efficiency, ultimately arriving at the conclusion that a Support Vector
Machine that uses a Polynomial Kernel is the best algorithm and serves to demonstrate that
algorithms such as the ones analyzed have become advanced enough for more efficient, Al

driven systems to replace those of the status quo.

Introduction:

Plastics are extremely robust and durable substances sourced from fossil fuels, a quality
that makes them extremely popular for building, packaging, etc... But after these plastics have
served their purpose or need to be replaced, this same longevity that made them good for so
many years also makes them extremely bad for the environment, becoming litter for up to 500
years (Chariot Energy).

In order to combat these negative effects, many will point to recycling as the solution,

recognizing that the reuse of plastics (in different forms) will keep them both out of landfills and
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oceans. And while the thought behind recycling is a very promising one, current recycling
systems within the US often fail to recycle even the majority of recyclable plastic waste.
According to the United States Environmental Protection Agency, only 8.7% (EPA) of the total
plastics generated in 2018 were recycled (similar to the international recycling rate of 9%
(Parker)) and only 18.5% (EPA) of PET plastics (a type of plastic that is 100% recyclable (PET
Resin Association)). While these low numbers stem from the meager 35% of people in the US
who actually recycle, there is no reason that these two statistics should be separated by almost
50% relative to each other (Morgan). The reasoning behind this massive difference has to do
with how plastic is recycled.

In order to recycle plastic, recycling plants need to melt plastics at very specific
temperatures to break apart distinct chemical bonds. The issue with this system, however, is that
different plastics have different melting points, meaning that plastics must be sorted by type
before they can be recycled. Most often, recycling plants have human employees conducting this
job; picking out recyclable pieces of plastic and sorting them together as they pass by on a
conveyor belt. Unfortunately, these workers often leave much recyclable material on these
conveyor belts, which send any remaining items (intended only to be trash) to incinerators or
landfills. And even though recently developed sorting machines significantly reduce the amount
of recyclable material that is missed within recycling facilities, these machines are often
expensive and out of reach for many smaller recycling plants.

With all this in mind, it becomes clear that sorting plastics is one of the biggest areas of
difficulty in the recycling process, justifying a look into potential methods using Al to simplify

this step.
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Background:

To address this issue, we propose that plastics are sorted within consumers’ homes using

machine learning computer vision models. By doing so, much of the plastics arriving at recycling

plants will already be sorted, meaning that human sorters will have an easier time in sorting out

recyclable vs. unrecyclable materials.

With this solution however, the question arises of how these artificial intelligence

algorithms geared towards recycling will be accessed by everyday people and for a reasonable

price. As an example, recycling companies could deploy special recycling cans where plastics

are scanned by a camera powered by artificial intelligence before being sorted into smaller bins

within the recycling device for future pickup by recycling trucks, as shown in the figure below.
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Figure 1: Sketch of Potential Al Powered Recycling Can
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But with a system such as the one described, it quickly becomes evident that it will not be
cheap to implement due to the complicated recycling cans and additional costs of setting up new
recycling infrastructure for the novel system, such as modified recycling trucks. While this may
be true in the short run, we believe that the ultimate costs of integrating a system that makes use
of the proposed solution will result in an equal if not great profit margin for recycling companies
stemming from a reduced need for human sorters and a greater volume of recycled plastics being
produced that can then be sold to plastics manufacturers. And not to mention the potential
benefits that keeping plastics out of landfills and incinerators has for the environment.

With all of that said however, the goal of reducing the cost of the system is still a high
priority. Particularly, the recycling cans that consumers will be using have a high potential for
cost reduction. On the one hand, the hope is that as close to 100% of the plastics deposited in the
cans will be sorted correctly. However, given the exponential increase in required memory,
compute power, and time for machine learning algorithms as the accuracy approaches 100%, the
goal for the remainder of this paper is to investigate a few different machine learning algorithms

and weigh the overall effectiveness of them depending on how well they balance these factors.

Dataset and Data Preprocessing:

This project utilized the WaDaBa Images Database that features 4000 images of 100
different objects, each photographed 40 times in different conditions. Each image was classified
based on the type of plastic, its color, the type of light that it was taken in, how deformed it was,
its dirtiness, whether it had a cap or lid, whether it had a plastic ring, and the random position
that it was in. All of these features were described in the names of the images that they were tied

to.
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Upon incorporating the images into Google Colaboratory, a few key preprocessing steps
needed to be taken before the data could be reasonably used. We first compressed each of the
images to a resolution of 224 by 337 pixels before cropping them to a resolution of 224 by 224
pixels (square) in order to decrease the amount of RAM necessary throughout the training and
testing of the machine learning algorithms. Next, the images were converted into “.npy” files
while simultaneously being added to a numpy array of size [4000, 224, 224, 3], allowing us to
easily access the data later. Finally, given that the algorithms we worked with required two
dimensional array inputs, we reshaped the current array to an array of size [4000, 150528].

Additionally, since this project revolves strictly around identifying the type of plastic that
something is regardless of other factors, we extracted only the plastic type from the names of the
files before adding them to a different numpy array, thus giving us the labels for our data, which

are represented in figure 2 below.
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Figure 2: Number of Images According to Plastic Type

Page 5 of 11



Methodology/Models:

Using the train_test_split() method, the data sourced from the preprocessing stage was
split 80% training to 20% test and set to a common random state for each trial so that the
comparison of the models would be guaranteed to be on the same data. Using this split data,
three different machine learning models (Logistic Regression, Support Vector Machine, and
K-Nearest Neighbors Classifier) were trained and tested before the classification report()
method was used to report the F1 accuracy score for each model on the data.

Additionally, the time that each model required to train and test on the dataset was

recorded.

Logistic Regression

Our implementation of the logistic regression model was very straightforward in that the
model was trained on the training portion of the data before being tested on the other portion of
the data. Logistic Regression is often regarded as an easy model to work with given that it is
simple to set up and has a high training efficiency. However, it should also be kept in mind that
one of the drawbacks of Logistic Regression is that models have a tendency to overfit

themselves, resulting in data that may not be remotely replicable in the real world.

Support Vector Machine

Support Vector Machines (SVM) make use of tools known as kernels in order to help
reduce the time taken to compute complex calculations. For the purposes of this project’s data,
there are three different kernels that can be executed on SVMs to obtain valid results: Gaussian,

Polynomial, and Sigmoid. In this project, we investigated all three models.
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Furthermore, it should be noted that the Polynomial Kernel requires the specification of a
degree, changing how flexible the decision-boundary is. For our experiment, the degree was set

to a value of five.

K-Nearest Neighbors Classifier

For the K-Nearest Neighbors Classifier, the parameter “n_neighbors” determines that the
algorithm will look at “n_neighbors” number of values/points closest to the one it is currently
analyzing, determine the relative distances, and then classify the point based on which point it is
the closest to. Because of the way that this algorithm functions, it must be kept in mind that the
value of “n_neighbors” can drastically affect how the model reacts, especially at smaller values
as it tends to overfit when this is the case (the model is more generalized when the value of

“n_neighbors” is greater). For this project, an “n_neighbors” value of 40 will be utilized.

Results and Discussion:

After running tests on all of the algorithms, the results shown in the figure below

represent the F1 accuracy scores of each respective algorithm.
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Figure 3: F1 Accuracy Scores of Tested Machine Learning Algorithms

While Logistic Regression, SVM: Gaussian, SVM: Polynomial all had respective F1
accuracies above 70% (with SVM: Polynomial having the highest at 82%) and would be feasible
to deploy to consumer products just from this standpoint, the SVM: Sigmoid and K-Nearest
Neighbors algorithms had much lower values that would be far from acceptable regardless of the
their performance in other aspects of consideration such as time and memory management (it
should be considered that at accuracies this low, there is still a considerable amount of manual
sorting that must be done, quickly driving overall costs up). While not exactly clear what the
cause of these low scores are, we hypothesize that they have to do with the limitations of the
analyzed dataset, given that it only has 100 different objects in it and this could be an insufficient
number for proper training of a high level algorithm.

For the three remaining algorithms, the factors of time and memory should now be
considered given that the accuracy scores are relatively similar. In terms of the time that it took

for each algorithm to run on the testing set of data, Logistic Regression finished first at 2.33
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seconds, followed by SVM: Polynomial at 304.207 seconds, and finally SVM: Gaussian at
868.254 seconds. Keep in mind that this is the time required to identify 800 different images and
that the time it would take for each algorithm to identify a couple of objects is a few seconds at
most.

Given the ways that Logistic Regression and SVM models function as outlined in the
Methodology/Models section, both are relatively memory efficient after training has been
completed and either one should qualify to run on decently cheap computer hardware in extreme
cases (a RaspberryPi, for example).

With the time and memory efficiency of each algorithm in mind, it seems reasonable to
eliminate the SVM: Gaussian algorithm from consideration given that it both takes considerably
longer than the other algorithms and has a lower overall F1 accuracy score, leaving the decision
to fall between Logistic Regression and SVM: Polynomial for being used in a potential consumer
product. While Logistic Regression is incredibly fast in categorizing samples and does so at a
respectable accuracy, the drawbacks of the algorithm with its tendency to overfit and the already
respectable speed of SVM: Polynomial (less than a half a second per object analyzed) at a
slightly higher degree of accuracy, it can be concluded the SVM: Polynomial is the best machine

learning algorithm for our purposes.

Conclusion:

In this paper, it was determined that Support Vector Machine utilizing the Polynomial
Kernel best fit a consumer recycling can powered by Al for its good balance of accuracy,
memory allocation, required compute power, and time for analyzing a subject. Furthermore, this

conclusion serves as a proof of reasonable possibility, or rather that if given enough time and
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effort, there is indeed a path to both efficiently and effectively integrate Al plastic sorting
systems on the consumer end. And once again, while that path forward may not seem like the
most beneficial for recycling companies in the short term, it ultimately drives in more profit in
the long run and also helps to address the issues of plastic waste that currently plague our world.
While this research offers a good starting point for recycling groups to build on, potential
further developments of this research include exploring more powerful machine learning
algorithms like neural networks and expanding the scope of the database used for training and
testing (using more than just 100 objects). By making these changes to the experimental setup,
there is not an insignificant chance that F1 accuracy scores will increase by a good margin while

maintaining similar hardware and time limitations/factors.
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